Sunday, February 11, 2018

The Key to Relational Keys - A New Understanding




Version 3 of paper #4 in the PRACTICAL DATABASE FOUNDATION series is now available to order here. The Key To Relational Keys: A New Understanding is a completely new, re-written version that incorporates David McGoveran's formalization and interpretation of Codd's true RDM and introduces a new perspective. It is distinct from and supersedes all previous versions.

Abstract


The dual theoretical foundation of the RDM — simple set theory (SST) expressible in first order predicate logic (FOPL) — is applicable to database management because it is a theory of unique objects and objects are unique in the real world that databases represent. In the real world objects are uniquely identified by (1) a combination of one or more defining properties and/or (2) names assigned to them as members of various groups. A database relation is a formal representation of an object group, with tuples representing (facts about) and attributes representing properties and/or names of object members. Relational keys are attributes that represent formally in the database those identifying properties and names.

Their fundamental database role notwithstanding, relational keys are poorly understood. 70% of hits @dbdebunk.com are about keys and misconceptions about their necessity, what kinds of keys are relational, their functions, their selection, and so on, abound.
This paper defines and explains:

  • The relational key concept
  • The kinds of relational keys, their properties and functions
  • The formal PK mandate
  • PK selection
  • RDBMS key support

and debunks common misconceptions.


Sunday, January 28, 2018

This Week




1. Database truth of the week

"Relvars introduce a concept of assignment, which has no counterpart in either FOPL or set theory. If you add it to those formalisms you introduce computational completeness, which destroys both decidability (the existence of a general algorithm by which you can determine if an expression is or is not logically valid) and the guarantee that there exists a (query) evaluation procedure that will halt (the existence of a general algorithm by which you can evaluate the truth or falsity of every instantiated predicate expression given those instantiations from any given database). Therefore we must forbid relvars." --David McGoveran


2. What's wrong with this database picture?


"Many data and information modelers talk about all kinds of keys (or identifiers. I'll forego the distinction for now). I hear them talk about primary keys, alternate keys, surrogate keys, technical keys, functional keys, intelligent keys, business keys (for a Data Vault), human keys, natural keys, artificial keys, composite keys, warehouse keys or Dimensional Keys (or Data Warehousing) and whatnot. Then a debate rises on the use (and misuse) of all these keys ... The foremost question we should actually ask ourselves: can we formally disambiguate kinds of keys (at all)? Of all kinds of key, the primary key and the surrogate key gained the most discussion."
"If we take a look at the relational model we only see of one or more attributes that are unique for each tuple in a relation -- no other formal distinction is possible. When we talk about different kinds of keys we base our nomenclature on properties and behavior of the candidate keys. We formally do not have a primary key, it is a choice we make and as such we might treat this key slightly different from all other available keys in a relation. The discussion around primary keys stems more from SQL NULL problems, foreign key constraints and implementing surrogate keys. --Martijn Evers, Kinds of Keys: On the Nature of Key Classifications, dm-unseen.blogspot.com

Sunday, January 21, 2018

How to Think (and Not to Think) During Database Design



"I have to maintain some lists in DB (SQLServer, Oracle, DB2, Derby), I have 2 options to design underlying simple table:

"1st:
 NAME   VALUE
=================
 dept   HR
 dept   fin
 role   engineer
 role   designer
-----------------
UNIQUE CONSTRAINT (NAME, VALUE) and some other columns like auto generated ID, etc.
"2nd:
 NAME  VALUE_JSON_CLOB
==================================
dept   {["HR", "fin"]}
role   {["engineer", "designer"}]
----------------------------------
UNIQUE CONSTRAINT (NAME) and some other columns like auto generated ID, etc.
"There is no DELETE operation, only SELECT and INSERT/UPDATE. In first advantage is only INSERT is required but SELECT (fetch all values for a given NAME) will be slow. In second SELECT will be fast but UPDATE will be slow. By considering there could be 10000s of such lists with 1000s for possible values in the system with frequent SELECTs and less INSERTs, which TABLE design will be good in terms of select/insert/update performance." --SQL TABLE to store lists of strings, StackOverflow.com

Using a relational database to "maintain lists" probably does not merit attention and I actually considered canceling the debunking of this example. But it provides an opportunity to demonstrate the gap between conventional wisdom, database practice and SQL DBMSs and
Codd's true RDM, as formalized and interpreted by McGoveran [1]. Such use is induced by lack of foundation knowledge, so for the purpose of this discussion I treat the example as a case of "how not to think when performing database design".

Note: Certainly logical database design should not be contaminated with physical implementation considerations such as performance [2].


Monday, January 15, 2018

This Week and The End of Empire




1. Database truth of the week

"ALL names are human created, either by non-algorithmic assignment, or via some algorithm. We ONLY know that two types of objects are distinct because they have different sets of defining properties and, for a given object type, we ONLY know that two objects are distinct because the values (observed or measured) of that object type's defining properties are distinct. Names (of objects of some type) allow us to distinguish two such entities ONLY when they are 1:1 with the values of the object defining properties. Two sets of names (whether human assigned or machine generated) consistently identify the same set of entities ONLY when they are 1:1." --David McGoveran


2. What's wrong with this database picture?

"I have to maintain some lists in DB (SQLServer, Oracle, DB2, Derby), I have 2 options to design underlying simple table:

"1st:
 NAME   VALUE
=================
 dept   HR
 dept   fin
 role   engineer
 role   designer
-----------------
UNIQUE CONSTRAINT (NAME, VALUE) and some other columns like auto generated ID, etc.
"2nd:
 NAME  VALUE_JSON_CLOB
==================================
dept   {["HR", "fin"]}
role   {["engineer", "designer"}]
----------------------------------
UNIQUE CONSTRAINT (NAME) and some other columns like auto generated ID, etc.
"There is no DELETE operation, only SELECT and INSERT/UPDATE. In first advantage is only INSERT is required but SELECT (fetch all values for a given NAME) will be slow. In second SELECT will be fast but UPDATE will be slow. By considering there could be 10000s of such lists with 1000s for possible values in the system with frequent SELECTs and less INSERTs, which TABLE design will be good in terms of select/insert/update performance." --SQL TABLE to store lists of strings, StackOverflow.com

Friday, December 29, 2017

DBMS for Analytics: Risky Business Without Foundation Knowledge, Part 2




Note: This was originally posted at AllAnalytics, which no longer exists, so some links to other posts there no longer work, but I left them in to alert the reader that I have written on those specific subjects. Other links work.  

In this two-part series I alert analysts that correct interpretation and assessment of media/industry claims without being misled requires a good grasp of data fundamentals. In Part 1, I discussed the logical-physical confusion and the erroneous missclassification of DBMSs as relational and non-relational underlying the argument that the latter are superior to the former for analytics applications. In Part 2, I discuss a third misconception behind the claim.

Thursday, December 21, 2017

Re-writes (with Season's Greetings)



The following posts have been re-written to bring in line with the McGoveran formalization and interpretation of Codd's true RDM. Re-reading is strongly recommended.
"But the core Information Principle (IP) of the RDM mandates that all information in a relational database be represented explicitly and in exactly one way -- as values of relation attributes defined on domains. The difference between relation names is, thus, meaningful information, the representation of which violates the IP and the RDM, for which reason it is inaccessible to the DBMS: consider the candidate tuple {v1,v2} -- it is impossible for the DBMS to know to which relation it belongs based on the relation and attribute names because it does not understand semantics!" Database Design Relation Predicates and “Identical Relations”
"Some set defining properties are formed as the disjunction of two or more properties (a kind of relationship between two common properties). These disjuncts, taken together, are meaning criteria. Each meaning criterion (an individual disjunct) induces a partitioning of a set into two subsets, those that meet the criterion and those that do not. Alternatively, we can say that each meaning criterion serves to differentiate a possible subset of a set from other subsets of the set (some of the possible subsets will be disjoint, while others not). Each of the possible subsets of the set is then defined by (“inherits”): The defining properties of the set conjoined with at least one meaning criterion (that or those becoming the defining property, or properties, respectively, specific to the proper subset)." Meaning Criteria and Entity Supertype-Subtypes
"Although they are no longer used, inquiries about them persist and with the current proliferation of non-relational products (e.g., NoSQL, graph DBMSs) there is value in understanding them. The closest the industry came to implementing the RDM is SQL which, despite its poor relational fidelity, proved much superior relative to the complexity and inflexibility of preceding DBMSs. But the rules still expose poor relational fidelity of SQL DBMS's that have not been addressed for four decades, while new RDM violations were introduced.

We offer here our clarifications on the rules. For each rule, we:
  • Explain its intended objective;
  • Offer clarifications, some of which reflect our current understanding of the RDM -- distinct from conventional wisdom -- based on its dual theoretical foundation and a careful analysis of Codd's work;" --Interpreting Codd's 12 Rules



 




Sunday, December 17, 2017

This Week




1. Database truth of the week

"Within the database field, it is common to refer to three “level” of description: conceptual, logical, and physical. Both the logical level and the physical level are formal systems. By contrast, the conceptual level is typically an informal system and refers to the subject of the database.

The conceptual language is a subject language, in the terminology of formal systems. The conceptual level identifies the concepts to be formally represented by the logical and physical levels, and how users think and talk about those concepts. This level corresponds only informally to the so-called “conceptual schema” of earlier approaches to information management, which emphasized the capture of conceptual information using various techniques including diagrams and documentation having various degrees of formality, but not forming a strictly formal system themselves."
-- David McGoveran

2. What's wrong with this database picture?


I re-wrote two older debunkings to bring them in line with the McGoveran formalization and interpretation of Codd's true RDM. Re-reads are recommended.
"Can you have 2 tables, VIEWS and DOWNLOADS, with identical structure in a good DB schema (item_id, user_id, time). Some of the records will be identical but their meaning will be different depending on which table they are in. The "views" table is updated any time a user views an item for the first time. The "downloads" table is updated any time a user downloads an item for the first time. Both of the tables can exist without the other ..."
"I have a database for a school ... [with] are numerous tables obviously but consider these:
CONTACT - all contacts (students, faculty) has fields such as LAST, FIRST, MI, ADDR, CITY, STATE, ZIP, EMAIL;
FACULTY - hire info, login/password for electronic timesheet login, foreign key to CONTACT;
STUDENT - medical comments, current grade, foreign key to CONTACT.
Do you think it is a good idea to have a single table hold such info? Or, would you have had the tables FACULTY and STUDENT store LAST, FIRST, ADDR and other fields? ..."

View My Stats