“Ok, now that we have those two (Parts 3 and 4 of your series) 'on the table' so to speak, perhaps you would address these questions...
1. Would it be safe to say that facts expressed in a Conceptual model should be verifiable in reality?
2. Are the following facts logically equivalent or are they different:
a) The car with license number 62-JZK-6 has the color aquamarine blue
b) De auto met kenteken 62-JZK-6 heeft de kleur aquamarijnblauw
3. If a previously true fact is found in reality to be verifiably false, would that mean the Conceptual model is wrong or the Logical model, or reality?”
“I'm going to add another:
4. How does RDM handle temporal changes to the 'truth' of statement 2a) when:
a) The owner of the car paints it black.
b) The owner of the license plate legally transfers it to a truck.
c) The owner of the car replaces every single part except the chassis.”
John O'Gorman asked me these questions in a LinkedIn exchange[1] in response to my comments in another exchange on modeling[2], where I alerted to the confusion of levels of representation common in the industry, particularly conceptual-logical conflation(CLC)[3]: calling conceptual modeling data modeling both reflects and induces it.
Online exchanges are not a proper vehicle for learning, particularly foundation knowledge. Which is why I publish free blog posts, and papers and books, to which to refer interested serious data professionals. It just so happened that my just posted four-part series covers the subject at hand[4], so I referred to it, as well as other writings (the answers are already there if one cares to read them). I will not discuss the whole exchanges -- read them and judge for yourself -- but I promised to answer the questions here, where I can do them justice.
John raises primarily conceptual, not data model issues -- the latter are subservient to decisions in the former -- but then asks "how does RDM handle..." From experience, I recognize implicit doubts that the RDM can. As far as we know there is no formal data model[5] that is a superior alternative to the RDM with respect to "handling" conceptual issues (in fact, there is no other formal data model -- i.e., that satisfies Codd's definition -- period).
Since most of the issues involved are covered by McGoveran's work in progress[6] (in which my multi-part series is rooted), to ensure consistency with it I passed the questions by him. As he too pointed out, "Answers that work in all situations require highly complicated discussions and lots of time, and trying to teach someone without proper experience and educational background would be very cumbersome, or an oversimplication via online exchanges."
Here's what's possible within the constraints of a blog post -- the serious reader is referred to our writings.